Determinants of Treatment Response in Painful Diabetic Peripheral Neuropathy: A Combined Deep Sensory Phenotyping and Multimodal Brain MRI Study

Brain Function Differences in Children With Type 1 Diabetes: A Functional MRI Study of Working Memory

AbstractPainful diabetic peripheral neuropathy (DPN) is difficult to manage, as treatment response is often varied. The primary aim of this study was to examine differences in pain phenotypes between responders and nonresponders to intravenous lidocaine treatment using quantitative sensory testing. The secondary aim was to explore differences in brain structure and functional connectivity with treatment response. Forty-five consecutive patients who received intravenous lidocaine treatment for painful DPN were screened. Twenty-nine patients who met the eligibility criteria (responders, n = 14, and nonresponders, n = 15) and 26 healthy control subjects underwent detailed sensory profiling. Subjects also underwent multimodal brain MRI. A greater proportion of patients with the irritable (IR) nociceptor phenotype were responders to intravenous lidocaine treatment compared with nonresponders. The odds ratio of responding to intravenous lidocaine was 8.67 times greater (95% CI 1.4–53.8) for the IR nociceptor phenotype. Responders to intravenous lidocaine also had significantly greater mean primary somatosensory cortex cortical volume and functional connectivity between the insula cortex and the corticolimbic circuitry. This study provides preliminary evidence for a mechanism-based approach for individualizing therapy in patients with painful DPN.Received January 9, 2020.Accepted May 26, 2020.© 2020 by the American Diabetes Association

Via Source link