Genome-scale in vivo CRISPR screen identifies RNLS as a target for beta cell protection in type 1 diabetes

Genome-scale in vivo CRISPR screen identifies RNLS as a target for beta cell protection in type 1 diabetes

1.Atkinson, M. A., Roep, B. O., Posgai, A., Wheeler, D. C. S. & Peakman, M. The challenge of modulating β-cell autoimmunity in type 1 diabetes. Lancet Diabetes Endocrinol. 7, 52–64 (2019).CAS 
PubMed 

Google Scholar 
2.Odorico, J. et al. Report of the key opinion leaders meeting on stem cell-derived beta cells. Transplantation 102, 1223–1229 (2018).PubMed 
PubMed Central 

Google Scholar 
3.Herold, K. C. et al. An anti-CD3 antibody, teplizumab, in relatives at risk for Type 1 diabetes. N. Engl. J. Med. 381, 603–613 (2019).CAS 
PubMed 
PubMed Central 

Google Scholar 
4.Kroger, C. J., Clark, M., Ke, Q. & Tisch, R. M. Therapies to suppress β cell autoimmunity in type 1 diabetesFront. Immunol. 9, 1891 (2018).PubMed 
PubMed Central 

Google Scholar 
5.Han, X. et al. Generation of hypoimmunogenic human pluripotent stem cells. Proc. Natl Acad. Sci. USA 116, 10441–10446 (2019).CAS 
PubMed 

Google Scholar 
6.Deuse, T. et al. Hypoimmunogenic derivatives of induced pluripotent stem cells evade immune rejection in fully immunocompetent allogeneic recipients. Nat. Biotechnol. 37, 252–258 (2019).CAS 
PubMed 
PubMed Central 

Google Scholar 
7.Hamaguchi, K., Gaskins, H. R. & Leiter, E. H. NIT-1, a pancreatic β-cell line established from a transgenic NOD/Lt mouse. Diabetes 40, 842–849 (1991).CAS 
PubMed 

Google Scholar 
8.Pearson, J. A., Wong, F. S. & Wen, L. The importance of the non obese diabetic (NOD) mouse model in autoimmune diabetes. J. Autoimmun. 66, 76–88 (2016).CAS 
PubMed 

Google Scholar 
9.Sanjana, N. E., Shalem, O. & Zhang, F. Improved vectors and genome-wide libraries for CRISPR screening. Nat. Methods 11, 783–784 (2014).CAS 
PubMed 
PubMed Central 

Google Scholar 
10.Barrett, J. C. et al. Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat. Genet. 41, 703–707 (2009).CAS 
PubMed 
PubMed Central 

Google Scholar 
11.Howson, J. M. M. et al. Evidence of gene-gene interaction and age-at-diagnosis effects in type 1 diabetes. Diabetes 61, 3012–3017 (2012).CAS 
PubMed 
PubMed Central 

Google Scholar 
12.Haskins, K., Portas, M., Bergman, B., Lafferty, K. & Bradley, B. Pancreatic islet-specific T-cell clones from nonobese diabetic mice. Proc. Natl Acad. Sci. USA 86, 8000–8004 (1989).CAS 
PubMed 

Google Scholar 
13.Katz, J. D., Wang, B., Haskins, K., Benoist, C. & Mathis, D. Following a diabetogenic T cell from genesis through pathogenesis. Cell 74, 1089–1100 (1993).CAS 
PubMed 

Google Scholar 
14.Marré, M. L. et al. Inherent ER stress in pancreatic islet β cells causes self-recognition by autoreactive T cells in type 1 diabetes. J. Autoimmun. 72, 33–46 (2016).PubMed 
PubMed Central 

Google Scholar 
15.Clark, A. L. & Urano, F. Endoplasmic reticulum stress in beta cells and autoimmune diabetes. Curr. Opin. Immunol. 43, 60–66 (2016).CAS 
PubMed 
PubMed Central 

Google Scholar 
16.Ozcan, U. et al. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306, 457–461 (2004).PubMed 

Google Scholar 
17.Izumi, T. et al. Dominant negative pathogenesis by mutant proinsulin in the Akita diabetic mouse. Diabetes 52, 409–416 (2003).CAS 
PubMed 

Google Scholar 
18.Kracht, M. J. L. et al. Autoimmunity against a defective ribosomal insulin gene product in type 1 diabetes. Nat. Med. 23, 501–507 (2017).CAS 
PubMed 

Google Scholar 
19.Marre, M. L. et al. Modifying enzymes are elicited by ER stress, generating epitopes that are selectively recognized by CD4+ T cells in patients with type 1 diabetes. Diabetes 67, 1356–1368 (2018).CAS 
PubMed 
PubMed Central 

Google Scholar 
20.Sidney, J. et al. Low HLA binding of diabetes-associated CD8+ T-cell epitopes is increased by post translational modifications. BMC Immunol. 19, 12 (2018).PubMed 
PubMed Central 

Google Scholar 
21.Thomaidou, S. et al. β-cell stress shapes CTL immune recognition of preproinsulin signal peptide by post-transcriptional regulation of endoplasmic reticulum aminopeptidase 1. Diabetes 69, 670–680 (2020).CAS 
PubMed 

Google Scholar 
22.Cardozo, A. K. et al. Cytokines downregulate the sarcoendoplasmic reticulum pump Ca2+ ATPase 2b and deplete endoplasmic reticulum Ca2+, leading to induction of endoplasmic reticulum stress in pancreatic β-cells. Diabetes 54, 452–461 (2005).CAS 
PubMed 

Google Scholar 
23.Cox, J. S., Shamu, C. E. & Walter, P. Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase. Cell 73, 1197–1206 (1993).CAS 
PubMed 

Google Scholar 
24.Harding, H. P., Zhang, Y. & Ron, D. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397, 271–274 (1999).CAS 
PubMed 

Google Scholar 
25.Yoshida, H., Haze, K., Yanagi, H., Yura, T. & Mori, K. Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins. Involvement of basic leucine zipper transcription factors. J. Biol. Chem. 273, 33741–33749 (1998).CAS 
PubMed 

Google Scholar 
26.Oyadomari, S. et al. Targeted disruption of the Chop gene delays endoplasmic reticulum stress-mediated diabetes. J. Clin. Invest. 109, 525–532 (2002).CAS 
PubMed 
PubMed Central 

Google Scholar 
27.Minn, A. H., Hafele, C. & Shalev, A. Thioredoxin-interacting protein is stimulated by glucose through a carbohydrate response element and induces β-cell apoptosis. Endocrinology 146, 2397–2405 (2005).CAS 
PubMed 

Google Scholar 
28.Oslowski, C. M. et al. Thioredoxin-interacting protein mediates ER stress-induced β cell death through Initiation of the inflammasome. Cell Metab. 16, 265–273 (2012).CAS 
PubMed 
PubMed Central 

Google Scholar 
29.Kensler, T. W., Wakabayashi, N. & Biswal, S. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu. Rev. Pharmacol. Toxicol. 47, 89–116 (2007).CAS 
PubMed 

Google Scholar 
30.Moran, G. R. The catalytic function of renalase: a decade of phantoms. Biochim. Biophys. Acta 1864, 177–186 (2016).CAS 
PubMed 

Google Scholar 
31.Beaupre, B. A., Hoag, M. R., Roman, J., Försterling, F. H. & Moran, G. R. Metabolic function for human renalase: oxidation of isomeric forms of β-NAD(P)H that are inhibitory to primary metabolism. Biochemistry 54, 795–806 (2015).CAS 
PubMed 

Google Scholar 
32.Milani, M. et al. FAD-binding site and NADP reactivity in human renalase: a new enzyme involved in blood pressure regulation. J. Mol. Biol. 411, 463–473 (2011).CAS 
PubMed 

Google Scholar 
33.Taylor, J. D., Wykes, A. A., Gladish, Y. C. & Martin, W. B. New inhibitor of monoamine oxidase. Nature 187, 941–942 (1960).CAS 
PubMed 

Google Scholar 
34.Ansari, M. J. I. et al. The programmed death-1 (PD-1) pathway regulates autoimmune diabetes in nonobese diabetic (NOD) mice. J. Exp. Med. 198, 63–69 (2003).CAS 
PubMed 
PubMed Central 

Google Scholar 
35.Like, A. A. & Rossini, A. A. Streptozotocin-induced pancreatic insulitis: new model of diabetes mellitus. Science 193, 415–417 (1976).CAS 
PubMed 

Google Scholar 
36.Roep, B. O. Are insights gained from NOD mice sufficient to guide clinical translation? Another inconvenient truth. Ann. N. Y. Acad. Sci. 1103, 1–10 (2007).CAS 
PubMed 

Google Scholar 
37.Pagliuca, F. W. et al. Generation of functional human pancreatic β cells in vitro. Cell 159, 428–439 (2014).CAS 
PubMed 
PubMed Central 

Google Scholar 
38.Wang, L. et al. Renalase prevents AKI independent of amine oxidase activity. J. Am. Soc. Nephrol. 25, 1226–1235 (2014).CAS 
PubMed 
PubMed Central 

Google Scholar 
39.Wang, L., Velazquez, H., Chang, J., Safirstein, R. & Desir, G. V. Identification of a receptor for extracellular renalase. PLoS ONE 10, e0122932 (2015).PubMed 
PubMed Central 

Google Scholar 
40.Kolodecik, T. R. et al. The serum protein renalase reduces injury in experimental pancreatitis. J. Biol. Chem. 292, 21047–21059 (2017).CAS 
PubMed 
PubMed Central 

Google Scholar 
41.Veres, A. et al. Charting cellular identity during human in vitro β-cell differentiation. Nature 569, 368–373 (2019).CAS 
PubMed 
PubMed Central 

Google Scholar 
42.Joung, J. et al. Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening. Nat. Protoc. 12, 828–863 (2017).CAS 
PubMed 
PubMed Central 

Google Scholar 
43.Schuster, C., Jonas, F., Zhao, F. & Kissler, S. Peripherally induced regulatory T cells contribute to the control of autoimmune diabetes in the NOD mouse model. Eur. J. Immunol. 48, 1211–1216 (2018).CAS 
PubMed 
PubMed Central 

Google Scholar 
44.Shalem, O. et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343, 84–87 (2014).CAS 

Google Scholar 
45.Cao, J. et al. An easy and efficient inducible CRISPR/Cas9 platform with improved specificity for multiple gene targeting. Nucleic Acids Res. 44, e149 (2016).PubMed 
PubMed Central 

Google Scholar 
46.Kuznetsova, A. et al. Trimeprazine increases IRS2 in human islets and promotes pancreatic β cell growth and function in mice. JCI Insight 1, pii: e80749 (2016).
Google Scholar 
47.Binda, C. et al. Binding of rasagiline-related inhibitors to human monoamine oxidases: a kinetic and crystallographic analysis. J. Med. Chem. 48, 8148–8154 (2005).CAS 
PubMed 
PubMed Central 

Google Scholar 
48.Sastry, G. M., Adzhigirey, M., Day, T., Annabhimoju, R. & Sherman, W. Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J. Comput. Aided Mol. Des. 27, 221–234 (2013).PubMed 

Google Scholar 
49.Bowers, K. J. et al. Scalable algorithms for molecular dynamics simulations on commodity clusters. in Proc. International Conference for High Performance Computing, Networking, Storage, and Analysis (SC06) (ed. Horner-Miller, B.) 43 (ACM, 2006).

Via Source link