COL6A3 expression in adipose tissue cells is associated with levels of the homeobox transcription factor PRRX1

COL6A3 expression in adipose tissue cells is associated with levels of the homeobox transcription factor PRRX1

1.Rosen, E. D. & Spiegelman, B. M. What we talk about when we talk about fat. Cell 156, 20–44 (2014).CAS 
Article 
PubMed 
PubMed Central 

Google Scholar 
2.Datta, R., Podolsky, M. J. & Atabai, K. Fat fibrosis: friend or foe? JCI insight 3, e122289 (2018).3.Dalmas, E., Clément, K. & Guerre-Millo, M. Defining macrophage phenotype and function in adipose tissue. Trends Immunol. 32, 307–314 (2011).CAS 
PubMed 
Article 

Google Scholar 
4.Kim, J.-Y. et al. Obesity-associated improvements in metabolic profile through expansion of adipose tissue. J. Clin. Invest. 117, 2621–2637 (2007).CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 
5.Divoux, A. et al. Fibrosis in human adipose tissue: composition, distribution, and link with lipid metabolism and fat mass loss. Diabetes 59, 2817–2825 (2010).CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 
6.Khan, T. et al. Metabolic Dysregulation and Adipose Tissue Fibrosis: Role of Collagen VI. Mol. Cell. Biol. 29, 1575–1591 (2009).CAS 
PubMed 
Article 

Google Scholar 
7.Sun, K. et al. Endotrophin triggers adipose tissue fibrosis and metabolic dysfunction. Nat. Commun. 5, 3485 (2014).ADS 
PubMed 
PubMed Central 
Article 
CAS 

Google Scholar 
8.Zhao, Y. et al. Divergent functions of endotrophin on different cell populations in adipose tissue. Am. J. Physiol. Endocrinol. Metab. 311, E952–E963 (2016).PubMed 
PubMed Central 
Article 

Google Scholar 
9.Iyengar, P. et al. Adipocyte-derived collagen VI affects early mammary tumor progression in vivo, demonstrating a critical interaction in the tumor/stroma microenvironment. J. Clin. Invest. 115, 1163–1176 (2005).CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 
10.Park, J. & Scherer, P. E. Adipocyte-derived endotrophin promotes malignant tumor progression. J. Clin. Invest. 122, 4243–4256 (2012).CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 
11.Qiao, J. et al. Stroma derived COL6A3 is a potential prognosis marker of colorectal carcinoma revealed by quantitative proteomics. Oncotarget 6, 29929 (2015).PubMed 
PubMed Central 
Article 

Google Scholar 
12.Schenck, J. & Fitzgerald, J. Analysis of COL6A3, COL6A5 and COL6A6 gene expression in breast and prostate tumors. Adv. Clin. Transl. Res. 2, 1–10.13.Pasarica, M. et al. Adipose tissue collagen VI in obesity. J. Clin. Endocrinol. Metab. 94, 5155–5162 (2009).CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 
14.Spencer, M. et al. Adipose tissue macrophages in insulin-resistant subjects are associated with collagen VI and fibrosis and demonstrate alternative activation. Am. J. Physiol. Endocrinol. Metab. 299, E1016–E1027 (2010).CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 
15.Dankel, S. N. et al. COL6A3 expression in adipocytes associates with insulin resistance and depends on PPARγ and adipocyte size. Obesity 22, 1807–1813 (2014).CAS 
PubMed 
Article 

Google Scholar 
16.Gesta, S. et al. Reduced expression of collagen VI alpha 3 (COL6A3) confers resistance to inflammation-induced MCP1 expression in adipocytes. Obesity 24, 1695–1703 (2016).CAS 
PubMed 
Article 

Google Scholar 
17.Dankel, S. N. et al. Switch from stress response to homeobox transcription factors in adipose tissue after profound fat loss. PLoS ONE 5, e11033 (2010).ADS 
PubMed 
PubMed Central 
Article 
CAS 

Google Scholar 
18.McCulloch, L. J. et al. COL6A3 Is Regulated by Leptin in Human Adipose Tissue and Reduced in Obesity. Endocrinology 156, 134–146 (2015).PubMed 
Article 
CAS 

Google Scholar 
19.Essaghir, A. et al. Transcription factor regulation can be accurately predicted from the presence of target gene signatures in microarray gene expression data. Nucleic Acids Res. 38, e120 (2010).PubMed 
PubMed Central 
Article 
CAS 

Google Scholar 
20.Weiss, A. & Attisano, L. The TGFbeta Superfamily Signaling Pathway. Wiley Interdiscip. Rev. Dev. Biol. 2, 47–63 (2013).CAS 
PubMed 
Article 

Google Scholar 
21.Bortell, R., Owen, T. A., Ignotz, R., Stein, G. S. & Stein, J. L. TGFβ1 Prevents the down-regulation of type I procollagen, fibronectin, and TGFβ1 gene expression associated with 3T3-L1 pre-adipocyte differentiation. J. Cell. Biochem. 54, 256–263 (1994).CAS 
PubMed 
Article 

Google Scholar 
22.Choy, L., Skillington, J. & Derynck, R. Roles of autocrine TGF-beta receptor and Smad signaling in adipocyte differentiation. J. Cell Biol. 149, 667–682 (2000).CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 
23.Vaquerizas, J. M., Kummerfeld, S. K., Teichmann, S. A. & Luscombe, N. M. A census of human transcription factors: function, expression and evolution. Nat. Rev. Genet. 10, 252–263 (2009).CAS 
PubMed 
Article 

Google Scholar 
24.Langhardt, J. et al. Effects of weight loss on glutathione peroxidase 3 serum concentrations and adipose tissue expression in human obesity. Obes. Facts 11, 475 (2018).CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 
25.Claussnitzer, M. et al. Leveraging cross-species transcription factor binding site patterns: from diabetes risk Loci to disease mechanisms. Cell 156, 343–358 (2014).CAS 
PubMed 
Article 

Google Scholar 
26.Du, B. et al. The transcription factor paired-related homeobox 1 (Prrx1) inhibits adipogenesis by activating transforming growth factor-β (TGFβ) signaling. J. Biol. Chem. 288, 3036–3047 (2013).CAS 
PubMed 
Article 

Google Scholar 
27.Verrecchia, F., Chu, M. L. & Mauviel, A. Identification of novel TGF-beta /Smad gene targets in dermal fibroblasts using a combined cDNA microarray/promoter transactivation approach. J. Biol. Chem. 276, 17058–17062 (2001).CAS 
PubMed 
Article 

Google Scholar 
28.Sun, K., Halberg, N., Khan, M., Magalang, U. J. & Scherer, P. E. Selective inhibition of hypoxia-inducible factor 1α ameliorates adipose tissue dysfunction. Mol. Cell. Biol. 33, 904–917 (2013).CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 
29.Schnoor, M. et al. Production of type VI collagen by human macrophages: a new dimension in macrophage functional heterogeneity. J. Immunol. 180, 5707–5719 (2008).CAS 
PubMed 
Article 

Google Scholar 
30.Arafat, H. et al. Tumor-specific expression and alternative splicing of the COL6A3 gene in pancreatic cancer. Surgery 150, 306–315 (2011).PubMed 
PubMed Central 
Article 

Google Scholar 
31.Huang, Y. et al. Collagen type VI alpha 3 chain promotes epithelial-mesenchymal transition in bladder cancer cells via transforming growth factor β (TGF-β)/smad pathway. Med. Sci. Monit. 24, 5346–5354 (2018).CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 
32.Guglielmi, V. et al. Omental adipose tissue fibrosis and insulin resistance in severe obesity. Nutr. Diabetes 5, e175–e175 (2015).CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 
33.Martin, J. F., Bradley, A. & Olson, E. N. The paired-like homeo box gene MHox is required for early events of skeletogenesis in multiple lineages. Genes Dev. 9, 1237–1249 (1995).CAS 
PubMed 
Article 

Google Scholar 
34.Moore, E. R., Yang, Y. & Jacobs, C. R. Primary cilia are necessary for Prx1-expressing cells to contribute to postnatal skeletogenesis. J. Cell Sci. 131, jcs217828 (2018).35.Jones, F. S., Meech, R., Edelman, D. B., Oakey, R. J. & Jones, P. L. Prx1 controls vascular smooth muscle cell proliferation and tenascin-C expression and is upregulated with Prx2 in pulmonary vascular disease. Circ. Res. 89, 131–138 (2001).CAS 
PubMed 
Article 

Google Scholar 
36.Ihida-Stansbury, K. et al. Paired-related homeobox gene Prx1 is required for pulmonary vascular development. Circ. Res. 94, 1507–1514 (2004).CAS 
PubMed 
Article 

Google Scholar 
37.Yeo, S.-Y. et al. A positive feedback loop bi-stably activates fibroblasts. Nat. Commun. 9, 3016 (2018).ADS 
PubMed 
PubMed Central 
Article 
CAS 

Google Scholar 
38.Gong, J. et al. Paired related homeobox protein 1 regulates PDGF-induced chemotaxis of hepatic stellate cells in liver fibrosis. Lab. Investig. 97, 1020–1032 (2017).CAS 
PubMed 
Article 

Google Scholar 
39.Froidure, A. et al. Transcription factor PRRX1 is a master-regulator of IPF fibroblasts. QJM An Int. J. Med. 109, S12–S12 (2016).
Google Scholar 
40.Jiang, F. & Stefanovic, B. Homeobox gene Prx1 is expressed in activated hepatic stellate cells and transactivates collagen α1(I) promoter. Exp. Biol. Med. 233, 286–296 (2008).CAS 
Article 

Google Scholar 
41.Côté, J. A. et al. Temporal changes in gene expression profile during mature adipocyte dedifferentiation. Int. J. Genomics 2017, 5149362 (2017).PubMed 
PubMed Central 
Article 
CAS 

Google Scholar 
42.Côté, J. A. et al. Role of the TGF-β pathway in dedifferentiation of human mature adipocytes. FEBS Open Bio 7, 1092–1101 (2017).PubMed 
PubMed Central 
Article 
CAS 

Google Scholar 
43.Zech, M. et al. Recessive mutations in the α3 (VI) collagen gene COL6A3 cause early-onset isolated dystonia. Am. J. Hum. Genet. 96, 883–893 (2015).CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 
44.Gregorio, I., Braghetta, P., Bonaldo, P. & Cescon, M. Collagen VI in healthy and diseased nervous system. Dis. Model. Mech. 11, dmm032946 (2018).45.Sherman-Baust, C. A. et al. Remodeling of the extracellular matrix through overexpression of collagen VI contributes to cisplatin resistance in ovarian cancer cells. Cancer Cell 3, 377–386 (2003).CAS 
PubMed 
Article 

Google Scholar 
46.Chandler, C., Liu, T., Buckanovich, R. & Coffman, L. G. The double edge sword of fibrosis in cancer. Transl. Res. https://doi.org/10.1016/J.TRSL.2019.02.006 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
47.Lee, Y., Jung, W. H. & Koo, J. S. Adipocytes can induce epithelial-mesenchymal transition in breast cancer cells. Breast Cancer Res. Treat. 153, 323–335 (2015).CAS 
PubMed 
Article 

Google Scholar 
48.Su, F., Ahn, S., Saha, A., DiGiovanni, J. & Kolonin, M. G. Adipose stromal cell targeting suppresses prostate cancer epithelial-mesenchymal transition and chemoresistance. Oncogene 38, 1979–1988 (2019).CAS 
PubMed 
Article 

Google Scholar 
49.Morroni, M. et al. Reversible transdifferentiation of secretory epithelial cells into adipocytes in the mammary gland. Proc. Natl. Acad. Sci. U. S. A. 101, 16801–16806 (2004).ADS 
CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 
50.Ishay-Ronen, D. et al. Gain fat-lose metastasis: converting invasive breast cancer cells into adipocytes inhibits cancer metastasis. Cancer Cell 35, 17-32.e6 (2019).CAS 
PubMed 
Article 

Google Scholar 
51.Zhu, H. & Sun, G. Loss of PRRX1 induces epithelial-mesenchymal transition and cancer stem cell-like properties in A549 cells. Am. J. Transl. Res. 9, 1641 (2017).CAS 
PubMed 
PubMed Central 

Google Scholar 
52.Takano, S. et al. Prrx1 isoform switching regulates pancreatic cancer invasion and metastatic colonization. Genes Dev. 30, 233–247 (2016).CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 
53.Methlie, P. et al. Changes in adipose glucocorticoid metabolism before and after bariatric surgery assessed by direct hormone measurements. Obesity (Silver Spring). 21, 2495–2503 (2013).CAS 
Article 

Google Scholar 
54.Veum, V. L. et al. The nuclear receptors NUR77, NURR1 and NOR1 in obesity and during fat loss. Int. J. Obes. (Lond) 36, 1195–1202 (2012).CAS 
Article 

Google Scholar 
55.Hurtado del Pozo, C. et al. IPO8 and FBXL10: new reference genes for gene expression studies in human adipose tissue. Obesity 18, 897–903 (2010).56.Bolstad, B. M., Irizarry, R. A., Astrand, M. & Speed, T. P. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19, 185–193 (2003).CAS 
PubMed 
Article 

Google Scholar 

Via Source link