Incretin drugs in diabetic kidney disease: biological mechanisms and clinical evidence

Incretin drugs in diabetic kidney disease: biological mechanisms and clinical evidence

1.Levin, A. et al. Global kidney health 2017 and beyond: a roadmap for closing gaps in care, research, and policy. Lancet 390, 1888–1917 (2017).PubMed 
Article 
PubMed Central 

Google Scholar 
2.Saran, R. et al. US renal data system 2018 annual data report: epidemiology of kidney disease in the United States. Am. J. Kidney Dis. 73 (Suppl. 1), A7–A8 (2019).PubMed 
PubMed Central 
Article 

Google Scholar 
3.United States Renal Data System. 2019 Annual Data Report (USRDS, 2020).4.Saeedi, P. et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9(th) edition. Diabetes Res. Clin. Pract. 157, 107843 (2019).PubMed 
Article 
PubMed Central 

Google Scholar 
5.National Kidney Foundation. KDOQI clinical practice guideline for diabetes and CKD: 2012 Update. Am. J. Kidney Dis. 60, 850–886 (2012).Article 

Google Scholar 
6.ADA. Standards of medical care in diabetes – 2020. Diabetes Care 43, S1–S212 (2020).Article 

Google Scholar 
7.Cea Soriano, L., Johansson, S., Stefansson, B. & Rodriguez, L. A. Cardiovascular events and all-cause mortality in a cohort of 57,946 patients with type 2 diabetes: associations with renal function and cardiovascular risk factors. Cardiovasc. Diabetol. 14, 38 (2015).PubMed 
PubMed Central 
Article 

Google Scholar 
8.Scirica, B. M. et al. Cardiovascular outcomes according to urinary albumin and kidney disease in patients with type 2 diabetes at high cardiovascular risk: observations from the SAVOR-TIMI 53 trial. JAMA Cardiol. 3, 155–163 (2018).PubMed 
Article 

Google Scholar 
9.Afkarian, M. et al. Kidney disease and increased mortality risk in type 2 diabetes. J. Am. Soc. Nephrol. 24, 302–308 (2013).CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 
10.Daratha, K. B. et al. Risks of subsequent hospitalization and death in patients with kidney disease. Clin. J. Am. Soc. Nephrol. 7, 409–416 (2012).PubMed 
Article 

Google Scholar 
11.Gregg, E. W. et al. Changes in diabetes-related complications in the United States, 1990-2010. N. Engl. J. Med. 370, 1514–1523 (2014).CAS 
PubMed 
Article 

Google Scholar 
12.Harding, J. L., Pavkov, M. E., Magliano, D. J., Shaw, J. E. & Gregg, E. W. Global trends in diabetes complications: a review of current evidence. Diabetologia 62, 3–16 (2019).PubMed 
Article 

Google Scholar 
13.Hill, N. R. et al. Global prevalence of chronic kidney disease – a systematic review and meta-analysis. PLoS ONE 11, e0158765 (2016).PubMed 
PubMed Central 
Article 
CAS 

Google Scholar 
14.Alegre-Diaz, J. et al. Diabetes and cause-specific mortality in Mexico City. N. Engl. J. Med. 375, 1961–1971 (2016).PubMed 
PubMed Central 
Article 

Google Scholar 
15.Crews, D. C., Bello, A. K. & Saadi, G. World Kidney Day Steering Committee. Burden, access, and disparities in kidney disease. Kidney Int. 95, 242–248 (2019).PubMed 
Article 

Google Scholar 
16.Keith, D. S., Nichols, G. A., Gullion, C. M., Brown, J. B. & Smith, D. H. Longitudinal follow-up and outcomes among a population with chronic kidney disease in a large managed care organization. Arch. Intern. Med. 164, 659–663 (2004).PubMed 
Article 

Google Scholar 
17.Liyanage, T. et al. Worldwide access to treatment for end-stage kidney disease: a systematic review. Lancet 385, 1975–1982 (2015).PubMed 
Article 

Google Scholar 
18.Buse, J. B. et al. 2019 update to: management of hyperglycemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 43, 487–493 (2020).CAS 
PubMed 
Article 

Google Scholar 
19.Tuttle, K. R. et al. Dulaglutide versus insulin glargine in patients with type 2 diabetes and moderate-to-severe chronic kidney disease (AWARD-7): a multicentre, open-label, randomised trial. Lancet Diabetes Endocrinol. 6, 605–617 (2018). The participants of this trial with moderate-to-severe diabetic kidney disease who were treated with 52 weeks of dulaglutide experienced a slower decline in kidney function compared with those treated with insulin.CAS 
PubMed 
Article 

Google Scholar 
20.Gerstein, H. C. et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial. Lancet 394, 121–130 (2019).CAS 
Article 

Google Scholar 
21.Marso, S. P. et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 375, 311–322 (2016).CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 
22.Mann, J. F. E. et al. Liraglutide and renal outcomes in type 2 diabetes. N. Engl. J. Med. 377, 839–848 (2017). In this CVOT, liraglutide treatment was associated with lower rates of new-onset macroalbuminuria compared with placebo.CAS 
PubMed 
Article 

Google Scholar 
23.Pfeffer, M. A. et al. Lixisenatide in patients with type 2 diabetes and acute coronary syndrome. N. Engl. J. Med. 373, 2247–2257 (2015).CAS 
PubMed 
Article 

Google Scholar 
24.Muskiet, M. H. A. et al. Lixisenatide and renal outcomes in patients with type 2 diabetes and acute coronary syndrome: an exploratory analysis of the ELIXA randomised, placebo-controlled trial. Lancet Diabetes Endocrinol. 6, 859–869 (2018).CAS 
PubMed 
Article 

Google Scholar 
25.Marso, S. P. et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 375, 1834–1844 (2016). This CVOT demonstrated significantly lower rates of primary composite cardiovascular outcome and secondary kidney outcomes (new-onset or worsening nephropathy) after 2 years of treatment with oral semaglutide compared with placebo.CAS 
PubMed 
Article 

Google Scholar 
26.Holman, R. R. et al. Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 377, 1228–1239 (2017).CAS 
PubMed 
Article 

Google Scholar 
27.Bethel, M. A. et al. Microvascular and cardiovascular outcomes according to renal function in patients treated with once-weekly exenatide: insights from the EXSCEL trial. Diabetes Care 43, 446–452 (2020).PubMed 
Article 

Google Scholar 
28.Rosenstock, J. et al. Effect of linagliptin vs placebo on major cardiovascular events in adults with type 2 diabetes and high cardiovascular and renal risk: the CARMELINA Randomized Clinical Trial. JAMA 321, 69–79 (2019).CAS 
Article 

Google Scholar 
29.Scirica, B. M. et al. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N. Engl. J. Med. 369, 1317–1326 (2013).CAS 
PubMed 
Article 

Google Scholar 
30.Graaf, C. et al. Glucagon-like peptide-1 and its class B G protein-coupled receptors: a long march to therapeutic successes. Pharmacol. Rev. 68, 954–1013 (2016).PubMed 
PubMed Central 
Article 
CAS 

Google Scholar 
31.Holt, M. K. et al. Preproglucagon neurons in the nucleus of the solitary tract are the main source of brain GLP-1, mediate stress-induced hypophagia, and limit unusually large intakes of food. Diabetes 68, 21–33 (2019).CAS 
PubMed 
Article 

Google Scholar 
32.Holst, J. J., Albrechtsen, N. J. W., Rosenkilde, M. M. & Deacon, C. F. Physiology of the Incretin hormones, GIP and GLP-1-regulation of release and posttranslational modifications. Compr. Physiol. 9, 1339–1381 (2019).PubMed 
Article 

Google Scholar 
33.Zhou, B., Ji, K., Peng, A., Yang, X. & Huang, K. GLP-1(28-36) amide, a long ignored peptide revisited. Open Biochem. J. 8, 107–111 (2014).PubMed 
PubMed Central 
Article 

Google Scholar 
34.Vahl, T. P., Paty, B. W., Fuller, B. D., Prigeon, R. L. & D’Alessio, D. A. Effects of GLP-1-(7-36)NH2, GLP-1-(7-37), and GLP-1- (9-36)NH2 on intravenous glucose tolerance and glucose-induced insulin secretion in healthy humans. J. Clin. Endocrinol. Metab. 88, 1772–1779 (2003).CAS 
PubMed 
Article 

Google Scholar 
35.Lim, G. E. & Brubaker, P. L. Glucagon-like peptide 1 secretion by the L-cell. Diabetes 55 (Suppl. 2), 70–77 (2006).Article 
CAS 

Google Scholar 
36.Balks, H. J., Holst, J. J., von zur Muhlen, A. & Brabant, G. Rapid oscillations in plasma glucagon-like peptide-1 (GLP-1) in humans: cholinergic control of GLP-1 secretion via muscarinic receptors. J. Clin. Endocrinol. Metab. 82, 786–790 (1997).CAS 
PubMed 

Google Scholar 
37.Ellingsgaard, H. et al. GLP-1 secretion is regulated by IL-6 signalling: a randomised, placebo-controlled study. Diabetologia 63, 362–373 (2020).CAS 
PubMed 
Article 

Google Scholar 
38.Kahles, F. et al. GLP-1 secretion is increased by inflammatory stimuli in an IL-6-dependent manner, leading to hyperinsulinemia and blood glucose lowering. Diabetes 63, 3221–3229 (2014).CAS 
PubMed 
Article 

Google Scholar 
39.Drucker, D. J. The cardiovascular biology of glucagon-like peptide-1. Cell Metab. 24, 15–30 (2016).CAS 
PubMed 
Article 

Google Scholar 
40.Drucker, D. J. Mechanisms of Action and therapeutic application of glucagon-like peptide-1. Cell Metab. 27, 740–756 (2018). This article provides historical context about the characterization of GLP1 and extensively reviews its physiological role.CAS 
PubMed 
Article 

Google Scholar 
41.Kuhre, R. E. et al. Fructose stimulates GLP-1 but not GIP secretion in mice, rats, and humans. Am. J. Physiol. Gastrointest. Liver Physiol. 306, G622–G630 (2014).CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 
42.Reimann, F. et al. Glucose sensing in L cells: a primary cell study. Cell Metab. 8, 532–539 (2008).CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 
43.Adam, T. C. & Westerterp-Plantenga, M. S. Nutrient-stimulated GLP-1 release in normal-weight men and women. Horm. Metab. Res. 37, 111–117 (2005).CAS 
PubMed 
Article 

Google Scholar 
44.Hirasawa, A. et al. Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120. Nat. Med. 11, 90–94 (2005).CAS 
PubMed 
Article 

Google Scholar 
45.Reimann, F., Williams, L., da Silva Xavier, G., Rutter, G. A. & Gribble, F. M. Glutamine potently stimulates glucagon-like peptide-1 secretion from GLUTag cells. Diabetologia 47, 1592–1601 (2004).CAS 
PubMed 
Article 

Google Scholar 
46.Kuhre, R. E. et al. Peptide production and secretion in GLUTag, NCI-H716, and STC-1 cells: a comparison to native L-cells. J. Mol. Endocrinol. 56, 201–211 (2016).CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 
47.Shah, M. et al. Effect of meal composition on postprandial glucagon-like peptide-1, insulin, glucagon, C-peptide, and glucose responses in overweight/obese subjects. Eur. J. Nutr. 56, 1053–1062 (2017).CAS 
PubMed 
Article 

Google Scholar 
48.Kendall, C. W. et al. Acute effects of pistachio consumption on glucose and insulin, satiety hormones and endothelial function in the metabolic syndrome. Eur. J. Clin. Nutr. 68, 370–375 (2014).CAS 
PubMed 
Article 

Google Scholar 
49.Kehlet, U. et al. Addition of rye bran and pea fiber to pork meatballs enhances subjective satiety in healthy men, but does not change glycemic or hormonal responses: a randomized crossover meal test study. J. Nutr. 147, 1700–1708 (2017).CAS 
PubMed 

Google Scholar 
50.Yaribeygi, H., Maleki, M., Sathyapalan, T., Jamialahmadi, T. & Sahebkar, A. Anti-inflammatory potentials of incretin-based therapies used in the management of diabetes. Life Sci. 241, 117152 (2019).PubMed 
Article 
CAS 

Google Scholar 
51.Uribarri, J. & Tuttle, K. R. Advanced glycation end products and nephrotoxicity of high-protein diets. Clin. J. Am. Soc. Nephrol. 1, 1293–1299 (2006).CAS 
PubMed 
Article 

Google Scholar 
52.Adam, T. C. & Westerterp-Plantenga, M. S. Glucagon-like peptide-1 release and satiety after a nutrient challenge in normal-weight and obese subjects. Br. J. Nutr. 93, 845–851 (2005).CAS 
PubMed 
Article 

Google Scholar 
53.Kuhne S. G., Stengel A. Alteration of peptidergic gut-brain signaling under conditions of obesity. J. Physiol. Pharmacol. https://doi.org/10.26402/jpp.2019.5.01 (2019).54.Anandhakrishnan, A. & Korbonits, M. Glucagon-like peptide 1 in the pathophysiology and pharmacotherapy of clinical obesity. World J. Diabetes 7, 572–598 (2016).PubMed 
PubMed Central 
Article 

Google Scholar 
55.Neumiller, J. J. Incretin pharmacology: a review of the incretin effect and current incretin-based therapies. Cardiovasc. Hematol. Agents Med. Chem. 10, 276–288 (2012).CAS 
PubMed 
Article 

Google Scholar 
56.Bortolato, A. et al. Structure of class B GPCRs: new horizons for drug discovery. Br. J. Pharmacol. 171, 3132–3145 (2014).CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 
57.Zhu, L. et al. Glucagon-like peptide-1 receptor expression and its functions are regulated by androgen. Biomed. Pharmacother. 120, 109555 (2019).CAS 
PubMed 
Article 

Google Scholar 
58.Wang, H., Brun, T., Kataoka, K., Sharma, A. J. & Wollheim, C. B. MAFA controls genes implicated in insulin biosynthesis and secretion. Diabetologia 50, 348–358 (2007).CAS 
PubMed 
Article 

Google Scholar 
59.Hall, E. et al. DNA methylation of the glucagon-like peptide 1 receptor (GLP1R) in human pancreatic islets. BMC Med. Genet. 14, 76 (2013).CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 
60.Wildhage, I., Trusheim, H., Goke, B. & Lankat-Buttgereit, B. Gene expression of the human glucagon-like peptide-1 receptor is regulated by Sp1 and Sp3. Endocrinology 140, 624–631 (1999).CAS 
PubMed 
Article 
PubMed Central 

Google Scholar 
61.Pyke, C. & Knudsen, L. B. The glucagon-like peptide-1 receptor – or not? Endocrinology 154, 4–8 (2013).CAS 
PubMed 
Article 
PubMed Central 

Google Scholar 
62.Michel, M. C., Wieland, T. & Tsujimoto, G. How reliable are G-protein-coupled receptor antibodies? Naunyn Schmiedebergs Arch. Pharmacol. 379, 385–388 (2009).CAS 
PubMed 
Article 
PubMed Central 

Google Scholar 
63.Webb, D. R., Handel, T. M., Kretz-Rommel, A. & Stevens, R. C. Opportunities for functional selectivity in GPCR antibodies. Biochem. Pharmacol. 85, 147–152 (2013).CAS 
PubMed 
Article 
PubMed Central 

Google Scholar 
64.Pyke, C. et al. GLP-1 receptor localization in monkey and human tissue: novel distribution revealed with extensively validated monoclonal antibody. Endocrinology 155, 1280–1290 (2014).PubMed 
Article 
CAS 
PubMed Central 

Google Scholar 
65.Fan, Y. et al. Comparison of kidney transcriptomic profiles of early and advanced diabetic nephropathy reveals potential new mechanisms for disease progression. Diabetes 68, 2301–2314 (2019).CAS 
PubMed 
Article 

Google Scholar 
66.Baggio, L. L. et al. GLP-1 receptor expression within the human heart. Endocrinology 159, 1570–1584 (2018).CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 
67.Deacon, C. F. What do we know about the secretion and degradation of incretin hormones? Regul. Pept. 128, 117–124 (2005).CAS 
PubMed 
Article 

Google Scholar 
68.Moellmann, J. et al. Glucagon-like peptide 1 and its cleavage products are renoprotective in murine diabetic nephropathy. Diabetes. 67, 2410–2419 (2018).CAS 
PubMed 
Article 

Google Scholar 
69.Burgmaier, M. et al. Glucagon-like peptide-1 (GLP-1) and its split products GLP-1(9-37) and GLP-1(28-37) stabilize atherosclerotic lesions in apoe(-)/(-) mice. Atherosclerosis 231, 427–435 (2013).CAS 
PubMed 
Article 

Google Scholar 
70.Drucker, D. J. The biology of incretin hormones. Cell Metab. 3, 153–165 (2006).CAS 
PubMed 
Article 
PubMed Central 

Google Scholar 
71.Deacon, C. F. Physiology and pharmacology of DPP-4 in glucose homeostasis and the treatment of type 2 diabetes. Front. Endocrinol. 10, 80 (2019).Article 

Google Scholar 
72.Klemann, C., Wagner, L., Stephan, M. & von Horsten, S. Cut to the chase: a review of CD26/dipeptidyl peptidase-4’s (DPP4) entanglement in the immune system. Clin. Exp. Immunol. 185, 1–21 (2016).CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 
73.Hasan, A. A. & Hocher, B. Role of soluble and membrane-bound dipeptidyl peptidase-4 in diabetic nephropathy. J. Mol. Endocrinol. 59, R1–R10 (2017).CAS 
PubMed 
Article 
PubMed Central 

Google Scholar 
74.Lambeir, A. M., Durinx, C., Scharpe, S. & De Meester, I. Dipeptidyl-peptidase IV from bench to bedside: an update on structural properties, functions, and clinical aspects of the enzyme DPP IV. Crit. Rev. Clin. Lab. Sci. 40, 209–294 (2003).CAS 
PubMed 
Article 
PubMed Central 

Google Scholar 
75.Nauck, M. A. Incretin-based therapies for type 2 diabetes mellitus: properties, functions, and clinical implications. Am. J. Med. 124, S3–S18 (2011).CAS 
PubMed 
Article 
PubMed Central 

Google Scholar 
76.Ohnuma, K., Dang, N. H. & Morimoto, C. Revisiting an old acquaintance: CD26 and its molecular mechanisms in T cell function. Trends Immunol. 29, 295–301 (2008).CAS 
PubMed 
Article 
PubMed Central 

Google Scholar 
77.Shingu, K. et al. CD26 expression determines lung metastasis in mutant F344 rats: involvement of NK cell function and soluble CD26. Cancer Immunol. Immunother. 52, 546–554 (2003).CAS 
PubMed 
Article 
PubMed Central 

Google Scholar 
78.Frerker, N. et al. Phenotyping of congenic dipeptidyl peptidase 4 (DP4) deficient Dark Agouti (DA) rats suggests involvement of DP4 in neuro-, endocrine, and immune functions. Clin. Chem. Lab. Med. 47, 275–287 (2009).CAS 
PubMed 
Article 
PubMed Central 

Google Scholar 
79.Aroor, A. et al. DPP-4 Inhibitors as therapeutic modulators of immune cell function and associated cardiovascular and renal insulin resistance in obesity and diabetes. Cardiorenal Med. 3, 48–56 (2013).CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 
80.Matteucci, E. & Giampietro, O. Dipeptidyl peptidase-4 (CD26): knowing the function before inhibiting the enzyme. Curr. Med. Chem. 16, 2943–2951 (2009).CAS 
PubMed 
Article 

Google Scholar 
81.Trujillo, J. M. & Nuffer, W. GLP-1 receptor agonists for type 2 diabetes mellitus: recent developments and emerging agents. Pharmacotherapy 34, 1174–1186 (2014).CAS 
PubMed 
Article 

Google Scholar 
82.Drucker, D. J. & Nauck, M. A. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 368, 1696–1705 (2006).CAS 
PubMed 
Article 

Google Scholar 
83.Drucker, D. J. et al. Exenatide once weekly versus twice daily for the treatment of type 2 diabetes: a randomised, open-label, non-inferiority study. Lancet 372, 1240–1250 (2008).CAS 
Article 

Google Scholar 
84.Buse, J. B. et al. Liraglutide once a day versus exenatide twice a day for type 2 diabetes: a 26-week randomised, parallel-group, multinational, open-label trial (LEAD-6). Lancet 374, 39–47 (2009).CAS 
Article 

Google Scholar 
85.Meier, J. J. GLP-1 receptor agonists for individualized treatment of type 2 diabetes mellitus. Nat. Rev. Endocrinol. 8, 728–742 (2012).CAS 
PubMed 
Article 

Google Scholar 
86.Edwards, C. M. et al. Exendin-4 reduces fasting and postprandial glucose and decreases energy intake in healthy volunteers. Am. J. Physiol. Endocrinol. Metab. 281, E155–E161 (2001).CAS 
PubMed 
Article 

Google Scholar 
87.Nauck, M. A., Kemmeries, G., Holst, J. J. & Meier, J. J. Rapid tachyphylaxis of the glucagon-like peptide 1-induced deceleration of gastric emptying in humans. Diabetes 60, 1561–1565 (2011).CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 
88.Verdich, C. et al. A meta-analysis of the effect of glucagon-like peptide-1 (7-36) amide on ad libitum energy intake in humans. J. Clin. Endocrinol. Metab. 86, 4382–4389 (2001).CAS 
PubMed 
PubMed Central 

Google Scholar 
89.Raun, K., von Voss, P. & Knudsen, L. B. Liraglutide, a once-daily human glucagon-like peptide-1 analog, minimizes food intake in severely obese minipigs. Obesity 15, 1710–1716 (2007).CAS 
PubMed 
Article 
PubMed Central 

Google Scholar 
90.Meier, J. J. et al. Secretion, degradation, and elimination of glucagon-like peptide 1 and gastric inhibitory polypeptide in patients with chronic renal insufficiency and healthy control subjects. Diabetes 53, 654–662 (2004).CAS 
PubMed 
Article 

Google Scholar 
91.Ahmann, A. J. et al. Efficacy and safety of once-weekly semaglutide versus exenatide ER in subjects with type 2 diabetes (SUSTAIN 3): A 56-week, open-label, randomized clinical trial. Diabetes Care 41, 258–266 (2018).CAS 
Article 

Google Scholar 
92.Fineman, M. S. et al. Clinical relevance of anti-exenatide antibodies: safety, efficacy and cross-reactivity with long-term treatment. Diabetes Obes. Metab. 14, 546–554 (2012).CAS 
PubMed 
Article 

Google Scholar 
93.Ahren, B. Clinical results of treating type 2 diabetic patients with sitagliptin, vildagliptin or saxagliptin–diabetes control and potential adverse events. Best Pract. Res. Clin. Endocrinol. Metab. 23, 487–498 (2009).CAS 
PubMed 
Article 

Google Scholar 
94.Deacon, C. F. Therapeutic strategies based on glucagon-like peptide 1. Diabetes 53, 2181–2189 (2004).CAS 
PubMed 
Article 

Google Scholar 
95.DeFronzo, R. A. et al. Effects of exenatide versus sitagliptin on postprandial glucose, insulin and glucagon secretion, gastric emptying, and caloric intake: a randomized, cross-over study. Curr. Med. Res. Opin. 24, 2943–2952 (2008).CAS 
PubMed 
Article 

Google Scholar 
96.Chen, X. W. et al. Clinical pharmacology of dipeptidyl peptidase 4 inhibitors indicated for the treatment of type 2 diabetes mellitus. Clin. Exp. Pharmacol. Physiol. 42, 999–1024 (2015).CAS 
PubMed 
Article 

Google Scholar 
97.Scheen, A. J. Pharmacokinetics of dipeptidylpeptidase-4 inhibitors. Diabetes Obes. Metab. 12, 648–658 (2010).CAS 
PubMed 
Article 

Google Scholar 
98.Food and Drug Administration. Guidance for industry: diabetes mellitus – evaluating cardiovascular risk in new antidiabetic therapies to treat type 2 diabetes. Federal Register https://www.federalregister.gov/documents/2008/12/19/E8-30086/guidance-for-industry-on-diabetes-mellitus-evaluating-cardiovascular-risk-in-new-antidiabetic (2008).99.Tuttle K. R. et al. CKD Outcomes in Type 2 Diabetes and Moderate-to-Severe CKD Treated with Dulaglutide Versus Insulin Glargine: AWARD-7 [abstract TH-OR033]. ASN Kidney Week 2018 https://www.asn-online.org/education/kidneyweek/2018/program-abstract.aspx?controlId=3008561 (2018).100.Tuttle K. R0., et al. Clinical events in type 2 diabetes and moderate-to-severe CKD by albuminuria status: dulaglutide vs. insulin glargine [Abstract SA-OR081]. ASN Kidney Week 2019 https://www.asn-online.org/education/kidneyweek/2019/program-abstract.aspx?controlId=3224819 (2019).101.Zavattaro, M. et al. One-year treatment with liraglutide improved renal function in patients with type 2 diabetes: a pilot prospective study. Endocrine 50, 620–626 (2015).CAS 
PubMed 
Article 

Google Scholar 
102.Davies, M. J. et al. Efficacy and safety of liraglutide versus placebo as add-on to glucose-lowering therapy in patients with type 2 diabetes and moderate renal impairment (LIRA-RENAL): a randomized clinical trial. Diabetes Care 39, 222–230 (2016).CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 
103.Husain, M. et al. Oral semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 381, 841–851 (2019).CAS 
PubMed 
Article 
PubMed Central 

Google Scholar 
104.Mann, J. F. E. et al. Effects of once-weekly subcutaneous semaglutide on kidney function and safety in patients with type 2 diabetes: a post hoc analysis of the SUSTAIN 1-7 randomized controlled trials. Lancet Diabetes Endocrinol. 8, 880–893 (2020).CAS 
PubMed 
Article 

Google Scholar 
105.Muskiet, M. H. A. et al. Exenatide twice-daily does not affect renal function or albuminuria compared to titrated insulin glargine in patients with type 2 diabetes mellitus: A post-hoc analysis of a 52-week randomised trial. Diabetes Res. Clin. Pract. 153, 14–22 (2019).CAS 
PubMed 
Article 

Google Scholar 
106.Kristensen, S. L. et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet Diabetes Endocrinol. 7, 776–785 (2019).CAS 
PubMed 
Article 

Google Scholar 
107.US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03819153?term=semaglutide+FLOW&draw=2&rank=1 (2019).108.White, W. B. et al. Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N. Engl. J. Med. 369, 1327–1335 (2013).CAS 
PubMed 
Article 

Google Scholar 
109.Garlo, K. G. et al. Kidney biomarkers and decline in eGFR in patients with type 2 Diabetes. Clin. J. Am. Soc. Nephrol. 13, 398–405 (2018).CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 
110.Groop, P. H. et al. Linagliptin and its effects on hyperglycaemia and albuminuria in patients with type 2 diabetes and renal dysfunction: the randomized MARLINA-T2D trial. Diabetes Obes. Metab. 19, 1610–1619 (2017).CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 
111.Mosenzon, O. et al. Effect of saxagliptin on renal outcomes in the SAVOR-TIMI 53 Trial. Diabetes Care 40, 69–76 (2017).CAS 
PubMed 
Article 

Google Scholar 
112.Green, J. B. et al. Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 373, 232–242 (2015).CAS 
PubMed 
Article 

Google Scholar 
113.Cornel, J. H. et al. Effect of sitagliptin on kidney function and respective cardiovascular outcomes in type 2 diabetes: outcomes from TECOS. Diabetes Care 39, 2304–2310 (2016).CAS 
PubMed 
Article 

Google Scholar 
114.Alicic, R. Z., Rooney, M. T. & Tuttle, K. R. Diabetic kidney disease: challenges, progress, and possibilities. Clin. J. Am. Soc. Nephrol. 12, 2032–2045 (2017).CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 
115.Alicic, R. Z., Johnson, E. J. & Tuttle, K. R. Inflammatory mechanisms as new biomarkers and therapeutic targets for diabetic kidney disease. Adv. Chronic Kidney Dis. 25, 181–191 (2018).PubMed 
Article 

Google Scholar 
116.Anderberg, R. J. et al. Serum amyloid A and inflammation in diabetic kidney disease and podocytes. Lab. Invest. 95, 250–262 (2015).CAS 
PubMed 
Article 

Google Scholar 
117.Alicic, R. Z., Neumiller, J. J., Johnson, E. J., Dieter, B. & Tuttle, K. R. Sodium-glucose cotransporter 2 inhibition and diabetic kidney disease. Diabetes 68, 248–257 (2019).CAS 
PubMed 
Article 

Google Scholar 
118.Pichler, R., Afkarian, M., Dieter, B. P. & Tuttle, K. R. Immunity and inflammation in diabetic kidney disease: translating mechanisms to biomarkers and treatment targets. Am. J. Physiol. Ren. Physiol. 312, F716–F731 (2017).CAS 
Article 

Google Scholar 
119.Tang, S. C. W. & Yiu, W. H. Innate immunity in diabetic kidney disease. Nat. Rev. Nephrol. 16, 206–222 (2020). Extensive review of the role of dysregulated immunity and inflammation in diabetes.CAS 
PubMed 
Article 

Google Scholar 
120.Tuttle, K. R. et al. Effect of strict glycemic control on renal hemodynamic response to amino acids and renal enlargement in insulin-dependent diabetes mellitus. N. Engl. J. Med. 324, 1626–1632 (1991).CAS 
PubMed 
Article 

Google Scholar 
121.Tuttle, K. R. & Bruton, J. L. Effect of insulin therapy on renal hemodynamic response to amino acids and renal hypertrophy in non-insulin-dependent diabetes. Kidney Int. 42, 167–173 (1992).CAS 
PubMed 
Article 

Google Scholar 
122.Tuttle, K. R., Puhlman, M. E., Cooney, S. K. & Short, R. A. Effects of amino acids and glucagon on renal hemodynamics in type 1 diabetes. Am. J. Physiol. Ren. Physiol. 282, F103–F112 (2002).CAS 
Article 

Google Scholar 
123.Jha, J. C. et al. NADPH oxidase Nox5 accelerates renal injury in diabetic nephropathy. Diabetes 66, 2691–2703 (2017).CAS 
PubMed 
Article 

Google Scholar 
124.Hendarto, H. et al. GLP-1 analog liraglutide protects against oxidative stress and albuminuria in streptozotocin-induced diabetic rats via protein kinase A-mediated inhibition of renal NAD(P)H oxidases. Metabolism 61, 1422–1434 (2012).CAS 
PubMed 
Article 

Google Scholar 
125.Sancar-Bas, S., Gezginci-Oktayoglu, S. & Bolkent, S. Exendin-4 attenuates renal tubular injury by decreasing oxidative stress and inflammation in streptozotocin-induced diabetic mice. Growth Factors 33, 419–429 (2015).CAS 
PubMed 
Article 

Google Scholar 
126.Kodera, R. et al. Glucagon-like peptide-1 receptor agonist ameliorates renal injury through its anti-inflammatory action without lowering blood glucose level in a rat model of type 1 diabetes. Diabetologia 54, 965–978 (2011). Very early report of direct, glucose-independent anti-inflammatory effects of GLP1 agonists in the kidney.CAS 
PubMed 
Article 

Google Scholar 
127.Katagiri, D. et al. Protection of glucagon-like peptide-1 in cisplatin-induced renal injury elucidates gut-kidney connection. J. Am. Soc. Nephrol. 24, 2034–2043 (2013).CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 
128.Yang, H. et al. Exendin-4 ameliorates renal ischemia-reperfusion injury in the rat. J. Surg. Res. 185, 825–832 (2013).CAS 
PubMed 
Article 

Google Scholar 
129.Turner, J. E., Becker, M., Mittrucker, H. W. & Panzer, U. Tissue-resident lymphocytes in the kidney. J. Am. Soc. Nephrol. 29, 389–399 (2018).CAS 
PubMed 
Article 

Google Scholar 
130.Ferdinand, K. C. et al. Effects of the once-weekly glucagon-like peptide-1 receptor agonist dulaglutide on ambulatory blood pressure and heart rate in patients with type 2 diabetes mellitus. Hypertension 64, 731–737 (2014).CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 
131.Bunck, M. C. et al. Exenatide affects circulating cardiovascular risk biomarkers independently of changes in body composition. Diabetes Care 33, 1734–1737 (2010).CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 
132.Tremblay, A. J., Lamarche, B., Deacon, C. F., Weisnagel, S. J. & Couture, P. Effects of sitagliptin therapy on markers of low-grade inflammation and cell adhesion molecules in patients with type 2 diabetes. Metabolism 63, 1141–1148 (2014).CAS 
PubMed 
Article 

Google Scholar 
133.Mazidi, M., Karimi, E., Rezaie, P. & Ferns, G. A. Treatment with GLP1 receptor agonists reduce serum CRP concentrations in patients with type 2 diabetes mellitus: A systematic review and meta-analysis of randomized controlled trials. J. Diabetes Complications 31, 1237–1242 (2017).PubMed 
Article 

Google Scholar 
134.Hadjiyanni, I., Siminovitch, K. A., Danska, J. S. & Drucker, D. J. Glucagon-like peptide-1 receptor signalling selectively regulates murine lymphocyte proliferation and maintenance of peripheral regulatory T cells. Diabetologia 53, 730–740 (2010). This study provided the first experimental evidence for the anti-inflammatory and immunomodulatory properties of GLP1.CAS 
PubMed 
Article 

Google Scholar 
135.Lebherz, C. et al. Interleukin-6 predicts inflammation-induced increase of Glucagon-like peptide-1 in humans in response to cardiac surgery with association to parameters of glucose metabolism. Cardiovasc. Diabetol. 15, 21 (2016).PubMed 
PubMed Central 
Article 
CAS 

Google Scholar 
136.Ceriello, A. et al. Simultaneous GLP-1 and insulin administration acutely enhances their vasodilatory, antiinflammatory, and antioxidant action in type 2 diabetes. Diabetes Care 37, 1938–1943 (2014).CAS 
PubMed 
Article 

Google Scholar 
137.Arakawa, M. et al. Inhibition of monocyte adhesion to endothelial cells and attenuation of atherosclerotic lesion by a glucagon-like peptide-1 receptor agonist, exendin-4. Diabetes 59, 1030–1037 (2010).CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 
138.He, L. et al. Anti-inflammatory effects of exendin-4, a glucagon-like peptide-1 analog, on human peripheral lymphocytes in patients with type 2 diabetes. J. Diabetes Investig. 4, 382–392 (2013).CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 
139.Hogan, A. E. et al. Glucagon-like peptide 1 analogue therapy directly modulates innate immune-mediated inflammation in individuals with type 2 diabetes mellitus. Diabetologia 57, 781–784 (2014).CAS 
PubMed 
Article 

Google Scholar 
140.Shiraishi, D., Fujiwara, Y., Komohara, Y., Mizuta, H. & Takeya, M. Glucagon-like peptide-1 (GLP-1) induces M2 polarization of human macrophages via STAT3 activation. Biochem. Biophys. Res. Commun. 425, 304–308 (2012).CAS 
PubMed 
Article 

Google Scholar 
141.Chaudhuri, A. et al. Exenatide exerts a potent antiinflammatory effect. J. Clin. Endocrinol. Metab. 97, 198–207 (2012).CAS 
PubMed 
Article 

Google Scholar 
142.Akarte, A. S., Srinivasan, B. P., Gandhi, S. & Sole, S. Chronic DPP-IV inhibition with PKF-275-055 attenuates inflammation and improves gene expressions responsible for insulin secretion in streptozotocin induced diabetic rats. Eur. J. Pharm. Sci. 47, 456–463 (2012).CAS 
PubMed 
Article 

Google Scholar 
143.Tian, L. et al. Reversal of new-onset diabetes through modulating inflammation and stimulating beta-cell replication in nonobese diabetic mice by a dipeptidyl peptidase IV inhibitor. Endocrinology 151, 3049–3060 (2010).CAS 
PubMed 
Article 

Google Scholar 
144.Moschovaki Filippidou, F. et al. Glucagon-like peptide-1 receptor agonism improves nephrotoxic serum nephritis by inhibiting T-cell proliferation. Am. J. Pathol. 190, 400–411 (2020).CAS 
PubMed 
Article 

Google Scholar 
145.Kim, S. J. et al. DPP-4 inhibition enhanced renal tubular and myocardial GLP-1 receptor expression decreased in CKD with myocardial infarction. BMC Nephrol. 20, 75 (2019).PubMed 
PubMed Central 
Article 

Google Scholar 
146.Higashijima, Y., Tanaka, T., Yamaguchi, J., Tanaka, S. & Nangaku, M. Anti-inflammatory role of DPP-4 inhibitors in a nondiabetic model of glomerular injury. Am. J. Physiol. Ren. Physiol. 308, F878–F887 (2015).CAS 
Article 

Google Scholar 
147.Hasan, A. A. et al. Mechanisms of GLP-1 receptor-independent renoprotective effects of the dipeptidyl peptidase type 4 inhibitor linagliptin in GLP-1 receptor knockout mice with 5/6 nephrectomy. Kidney Int. 95, 1373–1388 (2019).CAS 
PubMed 
Article 

Google Scholar 
148.Ronn, J., Jensen, E. P., Wewer Albrechtsen, N. J., Holst, J. J. & Sorensen, C. M. Glucagon-like peptide-1 acutely affects renal blood flow and urinary flow rate in spontaneously hypertensive rats despite significantly reduced renal expression of GLP-1 receptors. Physiol Rep. 5, e13503 (2017).PubMed Central 
Article 
CAS 
PubMed 

Google Scholar 
149.Thomson, S. C., Kashkouli, A., Liu, Z. Z. & Singh, P. Renal hemodynamic effects of glucagon-like peptide-1 agonist are mediated by nitric oxide but not prostaglandin. Am. J. Physiol. Ren. Physiol. 313, F854–F858 (2017).Article 

Google Scholar 
150.Tang-Christensen, M. et al. Central administration of GLP-1-(7-36) amide inhibits food and water intake in rats. Am. J. Physiol. 271, R848–R856 (1996).CAS 
PubMed 

Google Scholar 
151.Tonneijck, L. et al. Postprandial renal haemodynamic effect of lixisenatide vs once-daily insulin-glulisine in patients with type 2 diabetes on insulin-glargine: An 8-week, randomised, open-label trial. Diabetes Obes. Metab. 19, 1669–1680 (2017).CAS 
PubMed 
Article 

Google Scholar 
152.Skov, J. et al. Glucagon-like peptide-1 (GLP-1): effect on kidney hemodynamics and renin-angiotensin-aldosterone system in healthy men. J. Clin. Endocrinol. Metab. 98, E664–E671 (2013).CAS 
PubMed 
Article 

Google Scholar 
153.Gutzwiller, J. P. et al. Glucagon-like peptide 1 induces natriuresis in healthy subjects and in insulin-resistant obese men. J. Clin. Endocrinol. Metab. 89, 3055–3061 (2004).CAS 
PubMed 
Article 

Google Scholar 
154.Carraro-Lacroix, L. R., Malnic, G. & Girardi, A. C. Regulation of Na+/H+ exchanger NHE3 by glucagon-like peptide 1 receptor agonist exendin-4 in renal proximal tubule cells. Am. J. Physiol. Ren. Physiol. 297, F1647–F1655 (2009).CAS 
Article 

Google Scholar 
155.Tonneijck, L. et al. Renal tubular effects of prolonged therapy with the GLP-1 receptor agonist lixisenatide in patients with type 2 diabetes mellitus. Am. J. Physiol. Ren. Physiol. 316, F231–F240 (2019).Article 

Google Scholar 
156.Crajoinas, R. O. et al. Mechanisms mediating the diuretic and natriuretic actions of the incretin hormone glucagon-like peptide-1. Am. J. Physiol. Ren. Physiol. 301, F355–F363 (2011).CAS 
Article 

Google Scholar 
157.Rieg, T. et al. Natriuretic effect by exendin-4, but not the DPP-4 inhibitor alogliptin, is mediated via the GLP-1 receptor and preserved in obese type 2 diabetic mice. Am. J. Physiol. Ren. Physiol. 303, F963–F971 (2012).CAS 
Article 

Google Scholar 
158.Girardi, A. C., Fukuda, L. E., Rossoni, L. V., Malnic, G. & Reboucas, N. A. Dipeptidyl peptidase IV inhibition downregulates Na+- H+ exchanger NHE3 in rat renal proximal tubule. Am. J. Physiol. Ren. Physiol. 294, F414–F422 (2008).CAS 
Article 

Google Scholar 
159.van Baar, M. J. B. et al. The incretin pathway as a therapeutic target in diabetic kidney disease: a clinical focus on GLP-1 receptor agonists. Ther. Adv. Endocrinol. Metab. 10, 2042018819865398 (2019).PubMed 
PubMed Central 

Google Scholar 
160.Farah, L. X. et al. The physiological role of glucagon-like peptide-1 in the regulation of renal function. Am. J. Physiol. Ren. Physiol. 310, F123–F127 (2016).CAS 
Article 

Google Scholar 
161.Muskiet, M. H. A. et al. GLP-1 and the kidney: from physiology to pharmacology and outcomes in diabetes. Nat. Rev. Nephrol. 13, 605–628 (2017). Comprehensive review of the role of GLP1 in the kidney and of its treatment potential.CAS 
PubMed 
Article 

Google Scholar 
162.Tonneijck, L. et al. Acute renal effects of the GLP-1 receptor agonist exenatide in overweight type 2 diabetes patients: a randomised, double-blind, placebo-controlled trial. Diabetologia 59, 1412–1421 (2016).CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 
163.Gilbert, M. P. & Pratley, R. E. GLP-1 analogs and DPP-4 inhibitors in type 2 diabetes therapy: review of head-to-head clinical trials. Front. Endocrinol. 11, 178 (2020).Article 

Google Scholar 
164.Moon, H. S., Kim, M. K. & Son, M. H. The development of non-peptide glucagon-like peptide-1 receptor agonist for the treatment of type 2 diabetes. Arch. Pharm. Res. 34, 1041–1043 (2011).CAS 
PubMed 
Article 

Google Scholar 
165.Chepurny, O. G. et al. Synthetic small molecule GLP-1 secretagogues prepared by means of a three-component indole annulation strategy. Sci. Rep. 6, 28934 (2016).PubMed 
PubMed Central 
Article 
CAS 

Google Scholar 
166.Perkovic, V. et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N. Engl. J. Med. 380, 2295–2306 (2019).CAS 
PubMed 
Article 
PubMed Central 

Google Scholar 
167.Heerspink, H. J. L. et al. Dapagliflozin in patients with chronic kidney disease. N. Engl. J. Med. 383, 1436–1446 (2020).CAS 
PubMed 
Article 

Google Scholar 
168.Packer, M. et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. N. Engl. J. Med. 383, 1413–1424 (2020).CAS 
PubMed 
Article 

Google Scholar 
169.Jensen, E. P. et al. Activation of GLP-1 receptors on vascular smooth muscle cells reduces the autoregulatory response in afferent arterioles and increases renal blood flow. Am. J. Physiol. Ren. Physiol. 308, F867–F877 (2015).CAS 
Article 

Google Scholar 
170.Korner, M., Stockli, M., Waser, B. & Reubi, J. C. GLP-1 receptor expression in human tumors and human normal tissues: potential for in vivo targeting. J. Nucl. Med. 48, 736–743 (2007).CAS 
PubMed 
Article 

Google Scholar 
171.Fujita, H. et al. The protective roles of GLP-1R signaling in diabetic nephropathy: possible mechanism and therapeutic potential. Kidney Int. 85, 579–589 (2014). This study reported on the antioxidative and anti-inflammatory effects of GLP1R agonists in the kidney and demonstrated improved kidney function and histology.CAS 
PubMed 
Article 

Google Scholar 
172.Sharkovska, Y. et al. Blood pressure and glucose independent renoprotective effects of dipeptidyl peptidase-4 inhibition in a mouse model of type-2 diabetic nephropathy. J. Hypertens. 32, 2211–2223 (2014).CAS 
PubMed 
Article 

Google Scholar 
173.Schlatter, P., Beglinger, C., Drewe, J. & Gutmann, H. Glucagon-like peptide 1 receptor expression in primary porcine proximal tubular cells. Regul. Pept. 141, 120–128 (2007).CAS 
PubMed 
Article 

Google Scholar 
174.Jackson, E. K., Kochanek, S. J. & Gillespie, D. G. Dipeptidyl peptidase IV regulates proliferation of preglomerular vascular smooth muscle and mesangial cells. Hypertension 60, 757–764 (2012).CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 
175.Kettmann, U., Humbel, B. & Holzhausen, H. J. Ultrastructural localization of dipeptidylpeptidase IV in the glomerulum of the rat kidney. Acta Histochem. 92, 225–227 (1992).CAS 
PubMed 
Article 

Google Scholar 
176.Hartel, S., Gossrau, R., Hanski, C. & Reutter, W. Dipeptidyl peptidase (DPP) IV in rat organs. Comparison of immunohistochemistry and activity histochemistry. Histochemistry 89, 151–161 (1988).CAS 
PubMed 
Article 

Google Scholar 
177.Stange, T., Kettmann, U. & Holzhausen, H. J. Immunoelectron microscopic single and double labelling of aminopeptidase N (CD 13) and dipeptidyl peptidase IV (CD 26). Acta Histochem. 98, 323–331 (1996).CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 
178.Yang, J. et al. Increase in DPP-IV in the intestine, liver and kidney of the rat treated with high fat diet and streptozotocin. Life Sci. 81, 272–279 (2007).CAS 
PubMed 
Article 

Google Scholar 
179.Takeda Pharmaceuticals America, Inc. Alogliptin (Nesina®) Tablets. Prescribing Information (Takeda Pharmaceuticals America, Inc., 2019).180.Boehringer Ingelheim Pharmaceuticals, Inc. Linagliptin (Tradjenta®) Tablets. Prescribing Information (Boehringer Ingelheim Pharmaceuticals, Inc., 2019)181.AstraZeneca Pharmaceuticals LP. Saxagliptin (Onglyza®) Tablets. Prescribing Information (AstraZeneca Pharmaceuticals LP, 2019).182.Merck & Co., Inc. Sitagliptin (Januvia®) Tablets. Prescribing Information. (Merck & Co., Inc., 2019).183.Novartis Pharma. Vildagliptin (Galvus). Summary of Product Characteristics. (Novartis Pharma, 2012).184.AstraZeneca Pharmaceuticals LP. Exenatide (Byetta®) Injection. Prescribing Information (AstraZeneca Pharmaceuticals LP, 2018).185.Sanofi-aventis U.S., LLC. Lixisenatide (Adlyxin®) Injection. Prescribing Information (Sanofi-aventis U.S., LLC, 2019).186.Novo Nordisk, Inc. Liraglutide (Victoza®) Injection. Prescribing Information (Novo Nordisk, Inc., 2019).187.Eli Lilly and Company. Dulaglutide (Trulicity®) Injection. Prescribing Information (Eli Lilly and Company, 2019).188.Novo Nordisk, Inc. Semaglutide (Ozempic®) Injection. Prescribing Information (Novo Nordisk, Inc., 2019).189.Novo Nordisk, Inc. Semaglutide (Rybelsus®) Tablets. Prescribing Information (Novo Nordisk, Inc., 2019).190.AstraZeneca Pharmaceuticals LP. Exenatide Extended-Release (Bydureon®) Injectable Suspension. Prescribing Information (AstraZeneca Pharmaceuticals LP, 2019).191.Park, C. W. et al. Long-term treatment of glucagon-like peptide-1 analog exendin-4 ameliorates diabetic nephropathy through improving metabolic anomalies in db/db mice. J. Am. Soc. Nephrol. 18, 1227–1238 (2007).CAS 
PubMed 
Article 

Google Scholar 
192.Ishibashi, Y., Nishino, Y., Matsui, T., Takeuchi, M. & Yamagishi, S. Glucagon-like peptide-1 suppresses advanced glycation end product-induced monocyte chemoattractant protein-1 expression in mesangial cells by reducing advanced glycation end product receptor level. Metabolism. 60, 1271–1277 (2011).CAS 
PubMed 
Article 

Google Scholar 
193.Gangadharan Komala, M., Gross, S., Zaky, A., Pollock, C. & Panchapakesan, U. Saxagliptin reduces renal tubulointerstitial inflammation, hypertrophy and fibrosis in diabetes. Nephrology 21, 423–431 (2016).CAS 
PubMed 
Article 

Google Scholar 
194.Liu, W. J. et al. Dipeptidyl peptidase IV inhibitor attenuates kidney injury in streptozotocin-induced diabetic rats. J. Pharmacol. Exp. Ther. 340, 248–255 (2012).CAS 
PubMed 
Article 

Google Scholar 
195.Marques, C. et al. Sitagliptin prevents inflammation and apoptotic cell death in the kidney of type 2 diabetic animals. Mediators Inflamm. 2014, 538737 (2014).PubMed 
PubMed Central 
Article 
CAS 

Google Scholar 
196.Nakashima, S., Matsui, T., Takeuchi, M. & Yamagishi, S. I. Linagliptin blocks renal damage in type 1 diabetic rats by suppressing advanced glycation end products-receptor axis. Horm. Metab. Res. 46, 717–721 (2014).CAS 
PubMed 
Article 

Google Scholar 
197.Kanasaki, K. et al. Linagliptin-mediated DPP-4 inhibition ameliorates kidney fibrosis in streptozotocin-induced diabetic mice by inhibiting endothelial-to-mesenchymal transition in a therapeutic regimen. Diabetes 63, 2120–2131 (2014).CAS 
PubMed 
Article 
PubMed Central 

Google Scholar 
198.Kodera, R. et al. Dipeptidyl peptidase-4 inhibitor ameliorates early renal injury through its anti-inflammatory action in a rat model of type 1 diabetes. Biochem. Biophys. Res. Commun. 443, 828–833 (2014). Early study demonstrating that a reduction of albuminuria and amelioration of histological changes in the kidneys of diabetic rats was mediated through anti-inflammatory rather than anti-hyperglycaemic effects.CAS 
PubMed 
Article 
PubMed Central 

Google Scholar 
199.Ceriello, A. et al. Glucagon-like peptide 1 reduces endothelial dysfunction, inflammation, and oxidative stress induced by both hyperglycemia and hypoglycemia in type 1 diabetes. Diabetes Care 36, 2346–2350 (2013).CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 
200.Wu, J. D. et al. Effect of exenatide on inflammatory and oxidative stress markers in patients with type 2 diabetes mellitus. Diabetes Technol. Ther. 13, 143–148 (2011).CAS 
PubMed 
Article 

Google Scholar 
201.Buldak, L. et al. Exenatide (a GLP-1 agonist) expresses anti-inflammatory properties in cultured human monocytes/macrophages in a protein kinase A and B/Akt manner. Pharmacol. Rep. 68, 329–337 (2016).CAS 
PubMed 
Article 

Google Scholar 
202.Rahman, K. et al. Inflammatory Ly6Chi monocytes and their conversion to M2 macrophages drive atherosclerosis regression. J. Clin. Invest. 127, 2904–2915 (2017).PubMed 
PubMed Central 
Article 

Google Scholar 
203.Bruen, R. et al. Liraglutide attenuates preestablished atherosclerosis in apolipoprotein E-deficient mice via regulation of immune cell phenotypes and proinflammatory mediators. J. Pharmacol. Exp. Ther. 370, 447–458 (2019).CAS 
PubMed 
Article 

Google Scholar 
204.Eissele, R. et al. Glucagon-like peptide-1 cells in the gastrointestinal tract and pancreas of rat, pig and man. Eur. J. Clin. Invest. 22, 283–291 (1992).CAS 
PubMed 
Article 

Google Scholar 
205.Holst, J. J. & Gromada, J. Role of incretin hormones in the regulation of insulin secretion in diabetic and nondiabetic humans. Am. J. Physiol. Endocrinol. Metab. 287, E199–E206 (2004).CAS 
PubMed 
Article 

Google Scholar 
206.Billing, L. J. et al. Co-storage and release of insulin-like peptide-5, glucagon-like peptide-1 and peptideYY from murine and human colonic enteroendocrine cells. Mol. Metab. 16, 65–75 (2018).CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 
207.Worthington, J. J., Reimann, F. & Gribble, F. M. Enteroendocrine cells-sensory sentinels of the intestinal environment and orchestrators of mucosal immunity. Mucosal Immunol. 11, 3–20 (2018).CAS 
PubMed 
Article 

Google Scholar 
208.Gribble, F. M. The gut endocrine system as a coordinator of postprandial nutrient homoeostasis. Proc. Nutr. Soc. 71, 456–462 (2012).CAS 
PubMed 
Article 

Google Scholar 
209.Tolhurst, G. et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 61, 364–371 (2012).CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 
210.Anini, Y., Hansotia, T. & Brubaker, P. L. Muscarinic receptors control postprandial release of glucagon-like peptide-1: in vivo and in vitro studies in rats. Endocrinology 143, 2420–2426 (2002).CAS 
PubMed 
Article 

Google Scholar 
211.Zhang, Y. et al. GLP-1 receptor in pancreatic alpha-cells regulates glucagon secretion in a glucose-dependent bidirectional manner. Diabetes 68, 34–44 (2019).CAS 
PubMed 
Article 

Google Scholar 
212.Chen, Y. T. et al. Exendin-4 and sitagliptin protect kidney from ischemia-reperfusion injury through suppressing oxidative stress and inflammatory reaction. J. Transl Med. 11, 270 (2013).PubMed 
PubMed Central 
Article 
CAS 

Google Scholar 

Via Source link