AdipoR agonist increases insulin sensitivity and exercise endurance in AdipoR-humanized mice

AdipoR agonist increases insulin sensitivity and exercise endurance in AdipoR-humanized mice

1.Hawley, J. A., Hargreaves, M., Joyner, M. J. & Zierath, J. R. Integrative biology of exercise. Cell 159, 738–749 (2014).CAS 
PubMed 
Article 
PubMed Central 

Google Scholar 
2.Ng, M. et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 384, 766–781 (2014).PubMed 
PubMed Central 
Article 

Google Scholar 
3.Friedman, J. M. Obesity in the new millennium. Nature 404, 632–634 (2000).CAS 
PubMed 
Article 
PubMed Central 

Google Scholar 
4.Gesta, S., Tseng, Y. H. & Kahn, C. R. Developmental origin of fat: tracking obesity to its source. Cell 131, 242–256 (2007).CAS 
PubMed 
Article 
PubMed Central 

Google Scholar 
5.Glass, C. K. & Olefsky, J. M. Inflammation and lipid signaling in the etiology of insulin resistance. Cell Metab. 15, 635–645 (2012).CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 
6.Lin, H. V. & Accili, D. Hormonal regulation of hepatic glucose production in health and disease. Cell Metab. 14, 9–19 (2011).CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 
7.Arita, Y. et al. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem. Biophys. Res. Commun. 257, 79–83 (1999).CAS 
PubMed 
Article 
PubMed Central 

Google Scholar 
8.Li, S., Shin, H. J., Ding, E. L. & van Dam, R. M. Adiponectin levels and risk of type 2 diabetes: a systematic review and meta-analysis. JAMA 302, 179–188 (2009).CAS 
PubMed 
Article 
PubMed Central 

Google Scholar 
9.Pischon, T. et al. Plasma adiponectin levels and risk of myocardial infarction in men. JAMA 291, 1730–1737 (2004).CAS 
PubMed 
Article 
PubMed Central 

Google Scholar 
10.Scherer, P. E., Williams, S., Fogliano, M., Baldini, G. & Lodish, H. F. A novel serum protein similar to C1q, produced exclusively in adipocytes. J. Biol. Chem. 270, 26746–26749 (1995).CAS 
PubMed 
Article 
PubMed Central 

Google Scholar 
11.Hu, E., Liang, P. & Spiegelman, B. M. AdipoQ is a novel adipose-specific gene dysregulated in obesity. J. Biol. Chem. 271, 10697–10703 (1996).CAS 
PubMed 
Article 
PubMed Central 

Google Scholar 
12.Maeda, K. et al. cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1 (AdiPose Most abundant Gene transcript 1). Biochem. Biophys. Res. Commun. 221, 286–289 (1996).CAS 
PubMed 
Article 
PubMed Central 

Google Scholar 
13.Nakano, Y., Tobe, T., Choi-Miura, N. H., Mazda, T. & Tomita, M. Isolation and characterization of GBP28, a novel gelatin-binding protein purified from human plasma. J. Biochem. 120, 803–812 (1996).CAS 
PubMed 
Article 
PubMed Central 

Google Scholar 
14.Zhang, Y. et al. Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425–432 (1994).CAS 
PubMed 
Article 
PubMed Central 

Google Scholar 
15.Kahn, C. R. Triglycerides and toggling the tummy. Nat. Genet. 25, 6–7 (2000).CAS 
PubMed 
Article 
PubMed Central 

Google Scholar 
16.Spiegelman, B. M. & Flier, J. S. Obesity and the regulation of energy balance. Cell 104, 531–543 (2001).CAS 
PubMed 
Article 
PubMed Central 

Google Scholar 
17.Schaffler, A. & Buechler, C. CTRP family: linking immunity to metabolism. Trends Endocrinol. Metab. 23, 194–204 (2012).PubMed 
Article 
CAS 
PubMed Central 

Google Scholar 
18.Yamauchi, T. et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat. Med 7, 941–946 (2001).CAS 
PubMed 
Article 
PubMed Central 

Google Scholar 
19.Fruebis, J. et al. Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc. Natl Acad. Sci. USA 98, 2005–2010 (2001).CAS 
PubMed 
Article 
PubMed Central 

Google Scholar 
20.Berg, A. H., Combs, T. P., Du, X., Brownlee, M. & Scherer, P. E. The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat. Med. 7, 947–953 (2001).CAS 
PubMed 
Article 
PubMed Central 

Google Scholar 
21.Combs, T. P., Berg, A. H., Obici, S., Scherer, P. E. & Rossetti, L. Endogenous glucose production is inhibited by the adipose-derived protein Acrp30. J. Clin. Invest. 108, 1875–1881 (2001).CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 
22.Zheng, Q. et al. C1q/TNF-related proteins, a family of novel adipokines, induce vascular relaxation through the adiponectin receptor-1/AMPK/eNOS/nitric oxide signaling pathway. Arterioscler Thromb. Vasc. Biol. 31, 2616–2623 (2011).CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 
23.Wong, G. W. et al. Molecular, biochemical and functional characterizations of C1q/TNF family members: adipose-tissue-selective expression patterns, regulation by PPAR-gamma agonist, cysteine-mediated oligomerizations, combinatorial associations and metabolic functions. Biochem J. 416, 161–177 (2008).CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 
24.Yamauchi, T. et al. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 423, 762–769 (2003).CAS 
PubMed 
Article 
PubMed Central 

Google Scholar 
25.Yamauchi, T. et al. Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions. Nat. Med. 13, 332–339 (2007).CAS 
PubMed 
Article 
PubMed Central 

Google Scholar 
26.Seldin, M. M., Tan, S. Y. & Wong, G. W. Metabolic function of the CTRP family of hormones. Rev. Endocr. Metab. Disord. 15, 111–123 (2014).CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 
27.Tang, Y. T. et al. PAQR proteins: a novel membrane receptor family defined by an ancient 7-transmembrane pass motif. J. Mol. Evol. 61, 372–380 (2005).CAS 
PubMed 
Article 
PubMed Central 

Google Scholar 
28.Tanabe, H. et al. Crystal structures of the human adiponectin receptors. Nature 520, 312–316 (2015).CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 
29.Vasiliauskaite-Brooks, I. et al. Structural insights into adiponectin receptors suggest ceramidase activity. Nature 544, 120–123 (2017).CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 
30.Holland, W. L. et al. Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin. Nat. Med. 17, 55–63 (2011).CAS 
PubMed 
Article 
PubMed Central 

Google Scholar 
31.Vasiliauskaite-Brooks, I., Healey, R. D. & Granier, S. 7TM proteins are not necessarily GPCRs. Mol. Cell Endocrinol. 491, 110397 (2019).CAS 
PubMed 
Article 
PubMed Central 

Google Scholar 
32.Holland, W. L. & Scherer, P. E. Structural biology: Receptors grease the metabolic wheels. Nature 544, 42–44 (2017).CAS 
PubMed 
Article 
PubMed Central 

Google Scholar 
33.Vasiliauskaite-Brooks, I. et al. Structure of a human intramembrane ceramidase explains enzymatic dysfunction found in leukodystrophy. Nat. Commun. 9, 5437 (2018).CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 
34.Kahn, B. B., Alquier, T., Carling, D. & Hardie, D. G. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab. 1, 15–25 (2005).CAS 
PubMed 
Article 
PubMed Central 

Google Scholar 
35.Kersten, S., Desvergne, B. & Wahli, W. Roles of PPARs in health and disease. Nature 405, 421–424 (2000).CAS 
PubMed 
Article 
PubMed Central 

Google Scholar 
36.Yamauchi, T. et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat. Med. 8, 1288–1295 (2002).CAS 
PubMed 
Article 
PubMed Central 

Google Scholar 
37.Tomas, E. et al. Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation. Proc. Natl Acad. Sci. USA 99, 16309–16313 (2002).CAS 
PubMed 
Article 
PubMed Central 

Google Scholar 
38.Rasmussen, M. S. et al. Adiponectin receptors in human adipose tissue: effects of obesity, weight loss, and fat depots. Obes. (Silver Spring) 14, 28–35 (2006).CAS 
Article 

Google Scholar 
39.Okada-Iwabu, M. et al. A small-molecule AdipoR agonist for type 2 diabetes and short life in obesity. Nature 503, 493–499 (2013).CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 
40.Iwabu, M. et al. Adiponectin and AdipoR1 regulate PGC-1alpha and mitochondria by Ca(2+) and AMPK/SIRT1. Nature 464, 1313–1319 (2010).CAS 
PubMed 
Article 
PubMed Central 

Google Scholar 
41.Okada-Iwabu, M., Iwabu, M., Ueki, K., Yamauchi, T. & Kadowaki, T. Perspective of small-molecule AdipoR Agonist For Type 2 Diabetes And Short Life In Obesity. Diabetes Metab. J. 39, 363–372 (2015).PubMed 
PubMed Central 
Article 

Google Scholar 
42.Iwabu, M., Okada-Iwabu, M., Yamauchi, T. & Kadowaki, T. Adiponectin/adiponectin receptor in disease and aging. NPJ Aging Mech. Dis. 1, 15013 (2015).PubMed 
PubMed Central 
Article 

Google Scholar 
43.Wu, Z. et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98, 115–124 (1999).CAS 
PubMed 
Article 
PubMed Central 

Google Scholar 
44.Mootha, V. K. et al. Erralpha and Gabpa/b specify PGC-1alpha-dependent oxidative phosphorylation gene expression that is altered in diabetic muscle. Proc. Natl Acad. Sci. USA 101, 6570–6575 (2004).CAS 
PubMed 
Article 
PubMed Central 

Google Scholar 
45.Shulman, G. I. Cellular mechanisms of insulin resistance. J. Clin. Invest 106, 171–176 (2000).CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 
46.Berchtold, M. W., Brinkmeier, H. & Muntener, M. Calcium ion in skeletal muscle: its crucial role for muscle function, plasticity, and disease. Physiol. Rev. 80, 1215–1265 (2000).CAS 
PubMed 
Article 
PubMed Central 

Google Scholar 
47.Meinild Lundby, A. K. et al. Exercise training increases skeletal muscle mitochondrial volume density by enlargement of existing mitochondria and not de novo biogenesis. Acta Physiol. (Oxf) 222, https://doi.org/10.1111/apha.12905 (2018).48.Handschin, C. & Spiegelman, B. M. The role of exercise and PGC1alpha in inflammation and chronic disease. Nature 454, 463–469 (2008).CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 
49.Mootha, V. K. et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34, 267–273 (2003).CAS 
PubMed 
Article 
PubMed Central 

Google Scholar 
50.Canto, C. et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458, 1056–1060 (2009).CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 
51.Paffenbarger, R. S. Jr. et al. The association of changes in physical-activity level and other lifestyle characteristics with mortality among men. N. Engl. J. Med. 328, 538–545 (1993).PubMed 
Article 
PubMed Central 

Google Scholar 
52.Lindgren, A. et al. Adiponectin receptor 2 deficiency results in reduced atherosclerosis in the brachiocephalic artery in apolipoprotein E deficient mice. PLoS ONE 8, e80330 (2013).CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 
53.Maeda, N. et al. Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nat. Med. 8, 731–737 (2002).CAS 
PubMed 
Article 
PubMed Central 

Google Scholar 
54.Kubota, N. et al. Disruption of adiponectin causes insulin resistance and neointimal formation. J. Biol. Chem. 277, 25863–25866 (2002).CAS 
PubMed 
Article 
PubMed Central 

Google Scholar 
55.Nawrocki, A. R. et al. Mice lacking adiponectin show decreased hepatic insulin sensitivity and reduced responsiveness to peroxisome proliferator-activated receptor gamma agonists. J. Biol. Chem. 281, 2654–2660 (2006).CAS 
PubMed 
Article 
PubMed Central 

Google Scholar 
56.Olson, E. N., Arnold, H. H., Rigby, P. W. & Wold, B. J. Know your neighbors: three phenotypes in null mutants of the myogenic bHLH gene MRF4. Cell 85, 1–4 (1996).CAS 
PubMed 
Article 
PubMed Central 

Google Scholar 
57.Ramirez-Solis, R., Zheng, H., Whiting, J., Krumlauf, R. & Bradley, A. Hoxb-4 (Hox-2.6) mutant mice show homeotic transformation of a cervical vertebra and defects in the closure of the sternal rudiments. Cell 73, 279–294 (1993).CAS 
PubMed 
Article 
PubMed Central 

Google Scholar 
58.Fiering, S. et al. Targeted deletion of 5′HS2 of the murine beta-globin LCR reveals that it is not essential for proper regulation of the beta-globin locus. Genes Dev. 9, 2203–2213 (1995).CAS 
PubMed 
Article 
PubMed Central 

Google Scholar 
59.Matsuzawa, Y. Pathophysiology and molecular mechanisms of visceral fat syndrome: the Japanese experience. Diabetes Metab. Rev. 13, 3–13 (1997).CAS 
PubMed 
Article 
PubMed Central 

Google Scholar 
60.Reaven, G. Insulin resistance and coronary heart disease in nondiabetic individuals. Arterioscler Thromb. Vasc. Biol. 32, 1754–1759 (2012).CAS 
PubMed 
Article 
PubMed Central 

Google Scholar 
61.Calle, E. E., Rodriguez, C., Walker-Thurmond, K. & Thun, M. J. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N. Engl. J. Med. 348, 1625–1638 (2003).PubMed 
Article 
PubMed Central 

Google Scholar 
62.Holland, W. L. & Scherer, P. E. Cell Biology. Ronning after the adiponectin receptors. Science 342, 1460–1461 (2013).CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 
63.Rosen, E. D. & Spiegelman, B. M. What we talk about when we talk about fat. Cell 156, 20–44 (2014).CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 
64.Kubota, N. et al. Pioglitazone ameliorates insulin resistance and diabetes by both adiponectin-dependent and -independent pathways. J. Biol. Chem. 281, 8748–8755 (2006).CAS 
PubMed 
Article 
PubMed Central 

Google Scholar 
65.Kamei, N. et al. Overexpression of monocyte chemoattractant protein-1 in adipose tissues causes macrophage recruitment and insulin resistance. J. Biol. Chem. 281, 26602–26614 (2006).CAS 
PubMed 
Article 
PubMed Central 

Google Scholar 
66.Minokoshi, Y. et al. Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature 415, 339–343 (2002).CAS 
PubMed 
Article 
PubMed Central 

Google Scholar 
67.Tsao, T. S., Murrey, H. E., Hug, C., Lee, D. H. & Lodish, H. F. Oligomerization state-dependent activation of NF-kappa B signaling pathway by adipocyte complement-related protein of 30 kDa (Acrp30). J. Biol. Chem. 277, 29359–29362 (2002).CAS 
PubMed 
Article 
PubMed Central 

Google Scholar 
68.Woods, A., Salt, I., Scott, J., Hardie, D. G. & Carling, D. The alpha1 and alpha2 isoforms of the AMP-activated protein kinase have similar activities in rat liver but exhibit differences in substrate specificity in vitro. FEBS Lett. 397, 347–351 (1996).CAS 
PubMed 
Article 
PubMed Central 

Google Scholar 
69.Hayashi, T. et al. Metabolic stress and altered glucose transport: activation of AMP-activated protein kinase as a unifying coupling mechanism. Diabetes 49, 527–531 (2000).CAS 
PubMed 
Article 
PubMed Central 

Google Scholar 
70.Civitarese, A. E. et al. Role of adiponectin in human skeletal muscle bioenergetics. Cell Metab. 4, 75–87 (2006).CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 
71.Heilbronn, L. K. et al. Glucose tolerance and skeletal muscle gene expression in response to alternate day fasting. Obes. Res. 13, 574–581 (2005).CAS 
PubMed 
Article 
PubMed Central 

Google Scholar 
72.Molina, A. J. et al. Skeletal muscle mitochondrial content, oxidative capacity, and Mfn2 Expression Are reduced in older patients with heart failure and preserved ejection fraction and are related to exercise intolerance. JACC Heart Fail 4, 636–645 (2016).PubMed 
PubMed Central 
Article 

Google Scholar 

Via Source link